The Sirius Enigmas Mathematical Tops

Kenneth Brecher Departments of Astronomy and Physics Boston University Boston, MA 02215, U.S.A. E-mail: <u>brecher@bu.edu</u> Website: <u>www.siriusenigmas.com</u>

Overview

The physics, mathematics and sheer beauty of spinning objects - tops, dreidels, gyroscopes, rattlebacks, planets, stars, black holes, galaxies - intrigues and delights everyone.

Having already introduced two new spinning tops to the world at previous G4G gatherings the ϕ TOP[®] at G4G12 - and the π TOP[®] at G4G13 - today I will introduce two new mathematical tops: the *e*Top and the *i*TOP.

Constants ϕ , π , *e* and *i*

D. Perkins, " ϕ , π , *e* and *i*", Mathematical Association of America, 2018.

The \phi TOP^{\mathbb{R}} The PhiTOP[®] is a prolate ellipsoid with ratio of major to minor axes equal to $\phi \sim 1.618...$

Cf. "Physics of the PhiTOP", K. Brecher and R. Cross, <u>The Physics Teacher</u>, 57, 74, 2019.

The $\pi TOP^{\mathbb{R}}$

The PiTOP[®] is a right circular cylinder with ratio of radius r to thickness t, $r/t = \pi \sim 3.14...$

πτοp[®] Dynamics

Spin the PiTOP[®] as you would a coin. It will spin but also precess. As the PiTOP[®] loses kinetic energy to friction, the angle α it makes with the surface will decrease and the precession frequency Ω increases.

Data based on the dynamics of the PiTOP[®] from Rod Cross, "Effects of Rolling Friction on a Spinning Coin", <u>European Journal of Physics</u>, 39, #3, 2018.

The *e***TOP** The *e***TOP** is an oblate ellipsoid with ratio of major/minor axes = $e \sim 2.718...$

eTOP Dynamics

The *e*TOP, like the π TOP, can be spun by hand starting from a standing position. It can also be spun up with a magnetic stirrer.

Imaginary Tops

Nick Bantock is the author "The Museum at Purgatory", among many other books.

*i*TOP – Inverting Top A "real" imaginary top is, well, hard to imagine. In its place, I have designed a quasi two-dimensional inverting top – the "*i*TOP".

iTOP Dynamics

Spin the iTOP starting from a standing position, heavy side down, and it almost instantly inverts to spin in the opposite direction! Imagine that! Almost an imaginary top!

The Sirius Enigmas Mathematical Tops

Euler's Identity $e^{i\pi} = -1$

Combined with the definition of ϕ

 $\frac{1}{\phi} - \phi = -1$ Results in the "*e*, *i*, π , ϕ " Identity: $e^{i\pi} = 1/\phi - \phi$

Sirius Enigmas Tops Physical Identity

Postscript: G4G14 Cuboctahedron Top

Post Postscript Introducing the DeltaCelt[®]

There is one more universal mathematical constant: $\delta \sim 4.669.....$ the Feigenbaum constant. In 2019 I designed a new rattleback or celt based on δ . Like the other Sirius Enigmas spinning tops, it is quite elegant. Its motion is counterintuitive. It is also adjustable.

